CSE 3150 — C++ Essentials — Yufeng Wu —Fall 2024
Syllabus Please read carefully.

An important message about this course: You will need to do a significant amount of C++
programming in this course. In particular,

1. Expect weekly programming assignments or projects.

2. The amount of code for these assignments would grow from almost trivial programs in the begin-
ning to a project that you may have to write at least one thousand lines of code (or more) near
the end of the semester.

3. You must be able to write and debug programs on your own. All assignments are individual.
My past experience of teaching this course is that often most students can write code, but quite
a number of students cannot debug the code. If you haven’t acquired the skill of debugging a
non-trivial piece of program, you will have to pick up that skill quickly.

4. Taken from the SET report from Fall 2023 class (with 20 students): (i) 67% students felt the
course is more difficult and 33% felt the course is much more difficult than other courses. (ii) 33%
students felt they learned more from the course and 67% felt they learned much more from this
course than other courses. (iii) On the number of hours spent weekly on the course outside class:
4 to 6 for 50% students, 7 to 9 for 33% students and 10 to 14 for 17% students.

I strongly believe a student in Computer Science major should possess good programming skills, no
matter what career he or she will pursue. Please note “buggy” or “spaghetti” code has literally no value.
As a trained computer science professional, you are supposed to write quality code that really works
L. The best way to improve coding skills is by practicing on some programming tasks that are close
to some real world applications. In the past, I heard some students said some assignments in the class
(especially projects) are challenging. A senior student complained that the assigned programming work
in this course was way more than what he or she did in the senior design project. I believe the amount of
the programming tasks in this course, while non-trivial, are certainly doable within reasonable amount
of time. CSE 3150 is not an entry-level course. I expect a student has already known C programming
well (I will conduct a C code practice session in the beginning of the class to check your C programming
skills). I know this course may feel hard for quite a number of students. One thing I am certain is: if
you stay in the class till the end, you will learn a lot. Quote from a student from fall 2022 class: this
course “felt like the most applicable course I have taken in CSE so far, and as hard as it was, really
solidified for me that I want to pursue a career in software engineering”.

1 Overview

This course is about learning the C++ language and applying C++ in practice. There are two main
objectives for this course.

1. Learn the C++ as a programming language. C++ is a powerful language. It is not as fancy as
newer programming languages such as Java and Python. Nonetheless, C++ still has a significant
market share in programming languages. During the first several weeks, each student needs to
pick up C++ and can use it as a working programming language.

Mf you haven’t heard about, there are machine learning based automated programming systems that can generate code.



2.

2

Learn object oriented design and programming in C++. C++ is one of the object oriented (OO)
programming languages, so are Java and Python. However, it is important to note that program-
ming in an object oriented language doesn’t mean your programs follow the object orientation
paradigm. A main objective of this course is teaching you how to perform OO design and pro-
gramming in C++. I believe OO using C++ is one of the most important applications for C++-.
I know many of you may already have taken courses that cover some aspects of OO. Still, I believe
you will learn a lot in this course by practicing OO on a somewhat larger scale using C++.

Administrative issues

Instructor Yufeng Wu. Office hour: Wednesday: 10 am to 12 pm (after class). ITEB 235. Email:
yufeng.wu@uconn.edu. Please avoid emailing me for questions regarding assignments. Post in Piazza
instead.

TA:
1.

2.

7.
8.

Check HuskyCT and Piazza for office hours of TAs.
Alexander Hamilton, alexander.2.hamilton@uconn.edu

Amogh Parmatma Chaubey, amogh.chaubeyQuconn.edu

. Joshua Kaplan, joshua.a.kaplanQuconn.edu
. Chuanyu Xue, chuanyu.xue@uconn.edu
. Daniel Baker, daniel.baker@uconn.edu

. Mainak Mondal, mainak.mondal®@uconn.edu

Yiming Zhang, yiming.zhang.cse@uconn.edu

Ankit Bhardwaj, ankit.bhardwaj@uconn.edu

TAs’ office hours will be posted in HuskyCT /Piazza shortly.
Textbook: There is no required textbook. I do recommend the following books.

1.

Accelerated C++, A. Koenig and B. E. Moo, Andison-Wesley, 2000. This is a concise textbook
on C++. This book can be useful to get started with C+—+.

. Effective C++ by Scott Meyers. This is a great book for learning C++4-. I personally learned a

lot by reading this book. I won’t go through this book in depth in class. But quite a number of
topics in the book will be covered in the class assignments.

. More Effective C+-+ also by Scott Meyers. If you like the previous one, you may also like this

one.

. Design patterns: Elements of Reusable Object-Oriented Software. By E. Gamma, et al., Addison-

Wesley, 1994. I highly recommend this book. This is a great book for learning C++ based object
orientation. We will try to use the techniques in this book in the course project. Note this book
is a great book about object orientation and design patterns in C++. But it doesn’t really teach
you the C++ language itself.

Prerequisites: You need to know how to write programs. This is a 3000-level course. I won’t try to
teach you basics of programming (such as conditionals and loops), which I suppose you have learned in
a course like CSE 1010. All programming assignments will be individual-based. In the industry, team
work is essential. However, in order to be a good team player, you need to know how to write code
yourself first. If you cannot write programs on your own, you will likely struggle in this course. Note if



you cannot write programs, you will also likely have difficulty in landing good jobs after you graduate.
So be prepared; as 1 said earlier, you will write significant amount of code in this class. CSE 3100:
CSE 3100 is officially a prerequisite. You need to take CSE 3100 before taking this course. Since C is
a subset of C++, you will need to know how to program in C before learning the C++ specifics.
Lectures: Most lectures are likely be given as pre-recorded videos. Some of the scheduled class time
will be used mainly for review and practice, and sometimes tests. Some other scheduled class meetings
will be used for watching these videos. Please make sure to watch the lecture videos within the week
when the videos are assigned. Some lecture videos are marked as “optional”. These optional videos,
while useful, are not the most important parts. You should watch them if you have time or are really
interested in learning all of C++. But these optional videos won’t be covered much in assignments.
Programming assignments: I will assign programming assignments. These programming assign-
ments will focus on writing C++ programs to solve relatively small and well-defined problems. The
purpose of programming assignments is helping you get comfortable with programming in C++.
Exams: We will have several in-class exams. I expect to hold the following possibly paper-based exams:

1. C++ basics.
2. Object orientation, design patterns and other topics not covered by exam one.

These tests are designed to test whether you understand basic concepts (e.g., of C++ language or
object orientation). The current plan (again subject to change) is that there won’t be final exams. I
will assign a final project that will be in lieu of the final exam.

In-class exercises: During class and lab time we may work on some relatively small programming or
other types of exercises. The purpose is to review the lectures/readings done during the past week. Some
of the exercises will be closely related to the lectures (e.g., writing the code for the examples taught in
the lecture videos). These exercises are not exams. Please note: these exercises will be graded. I plan
to do live programming on many of the exercises in class. You will be given extra time to finish after
the class. I have heard from past students that these exercises can be an important part for learning in
this course. So please attend the class and complete and submit these exercises.

Lab session: The TAs will run the weekly lab sessions. During lab sessions, the TA may cover
programming assignments which are not completed during class time. There will be assignments in the
lab sessions. Lab submissions will be graded. Lab attendance is optional but students are responsible
to know the topics covered in the lab and make the required submission. At the end of the semester,
the TA will come up with a lab grade which is based on the lab submissions.

Laptop: I assume each student has a laptop (Windows, Mac or Linux). I haven’t got a student who
doesn’t have one in the past several times I taught this course. If you happen to not own a laptop, I
believe it is time to buy one. A Computer Science student without a laptop feels like a soldier without
weapon. When you come to the class, please bring your laptop. We will do live coding in class.

1. Windows. If you use Windows, I highly recommend you to install WSL 2. This is the Windows
implementation of Linux.

2. MacOS or Linux. You can just use the console environment for development.

Autograding of programming assignments: I plan to use Gradescope’s autograding for grading
programming assignments (but not the projects). We expect most (if not all) programming assignments
will be graded by autograder. Please note: we don’t have the resource to perform manual re-grading
for auto-graded assignments. That is, the score reported by the autograder will be the final score for
that assignment, unless otherwise stated. A frequent request by students is asking for partial credits
of the code that the student claim to be “almost working”. I don’t believe there is much value for a
code that is “almost working”: you cannot sell such code to a customer when working in the industry.
Moreover, it is not easy to verify the claim that the code is “almost working”. So please spend time to
make sure your code passes the test cases.



Extension of programming assignment submission: I frequently get requests for extension of
programming assignment submissions. So I am making my policy clear: every student gets one-day
automatic extension of all programming assignments (unless otherwise stated). There are circumstances
where we don’t allow extension. We will explicitly state so in those cases. Other than the automatic
one-day extension, we won’t give more extensions (unless there are unusual circumstances): a deadline
is a deadline. In the real world, you will have to work with deadlines. So try to complete your work on
time.

Project: We will have course projects. Course projects are somewhat more complex than programming
assignments in the following sense.

1. A project usually comes in more than one parts. You will need to build code for the next part on
top of what you did in the previous part. Therefore, it is important to maintain a working code
base. That is, make sure to fix the bugs in your code for the earlier parts; otherwise, your code
for the next part may not work.

2. A project usually has less given starter code. Likely I will only specify the necessary part from a
client’s point of view. You will have to furnish more details to make the code work.

3. A project may need some careful design and application of good OO principle.

I will provide more details about projects later in the course.

Grading: Programming assignments (30%), exams (30%), in-class exercises (10%), labs (5%), and
projects (25%). Letter grade will be decided based on the semester grade (the accumulative grade as
computed above). However, I may or may not use the standard conversion from the semester grade (as
computed above) to letter grades. I guess some of you are wondering that this means. It just means
that I have the flexibility of deciding whether to curve the grade or not. In the past, semester course
overall scores vary. Sometimes the whole class grades are low. I expect to use the standard conversion
(e.g., 90% for A/A-, 80% for B-/B/B+, and so on) as long as it leads to a reasonable distribution of
letter grades. Typically 20 to 30% of students will get A (including A-). But of course this doesn’t
necessarily mean the grades for this time will be like these. I may consider curving the grades if the
course grades are significantly lower than expected.

3 Organization of the course

This course will be heavily focused on practice. There are three main parts. I don’t plan to give many
lectures in this course. We will use the class meeting time mainly for discussion and lab.

1. Learning C++ basics. This part will be fast paced. You will need to watch video-based lectures
(in HuskyCT, recorded by Prof. Laurent Michel) which cover the C++ language. I Our class
meeting time during this period will be mainly devoted to discussion on how to work with C++,
and sometimes coding or paper-based tests.

2. Learning OO in C++4. After you have learned the basics of C++, we will switch to focus on
object orientation. Here, you will need to read the design pattern book. During class time, we
will discuss design patterns.

3. More topics in C++. I will cover more advanced topics in C++. Topics may include Lambda and
C++ pointers, among others. Exactly what topics and how many such topics to be covered will
depend on the progress of the course. It is possible that we won’t have enough time for these. Let
us see how the class progresses.



4 C++ specifics

In this course, I don’t plan to use any C++ IDE. We will use console-based (i.e., command line) C++
development. Programs are usually compiled using a Makefile. 1 will show you how to write simple
Makefile in the class. I do recommend to use a good program editor. I am aware of web-based services
where you can code and test your code online. While this can work for many programming assignments,
it may not work for the course projects. So please make sure you can code on your own computer.

5 Academic integrity

Students in this class are expected to follow the academic integrity code of UConn. For all assignments
(except the exams), you are allowed to discuss with other students. However, you must write pro-
grams yourself. Note: I do check the submitted code frequently. During the past several years, I did
catch several students who cheated in the programming assignments each time when I teach the class.
Thus I will make my policy clear.

1. If a student is caught cheating for the first time, I will meet with the student (with the presence
of a TA) to discuss this matter. The student would get zero for the assignment. The student has
to promise there is no more cheating in this class.

2. If a student is caught for the second time, I will meet with the student again (with a TA). The
student will get an F for this class.

5.1 More about academic integrity

Some students in the past asked me why I insist all assignments being individual. Why cannot students
collaborate? Isn’t collaboration the way how code is written in the industry? My past experience in
the industry is, team work is important in the industry but doesn’t work very well in a class like CSE
3150. If two students work together in a project, often the code is mostly written by the student with
stronger coding skills. This leaves the other student not contributing and not learning.

We are in the era where technologies are fast changing. I know that parts of the class assignments
may be done through latest Al (e.g., ChatGPT). I strongly suggest you not copying code from Al services
like ChatGPT. Some simpler problems may be solvable by ChatGPT. But my experience indicates for
more complex tasks (e.g., projects), ChatGPT just doesn’t work. Moreover, the very purpose of the
earlier (simpler) assignments is meant to let you learn gradually how to work with C++. If you just
copy code (from ChatGPT or from someone else), you would miss this important learning step.

I am frequently surprised that students in the class don’t actually understand what is “academic
misconduct”. The following is taken from UConn Community Standards: “Academic misconduct in-
cludes, but is not limited to: Providing or receiving assistance on academic work (papers, projects,
examinations) in a way that was not authorized by the instructor ” https://community.uconn.edu/
student-undergraduate-faq/. Please keep in mind: if you send your code to your friend, that is
cheating! If you copy code from some online resource (e.g., ChatGPT), that is cheating too.



